
Int J. Heat Mass Transfer. Vol. 24, No. 5, pp. 895-907, 1981 0017-9310/81/050895 13 $02.00/0 
Printed in Great Britain �9 1981 Pergamon Press Ltd 

INTERACTION BETWEEN INTERNAL NATURAL 
CONVECTION IN AN ENCLOSURE AND AN EXTERNAL 

NATURAL CONVECTION BOUNDARY-LAYER FLOW 

E. M. SPARROW and C. PRAKASH 

Department of Mechanical Engineering, University of Minnesota, 
Minneapolis, MN 55455, U.S.A. 

(Received 10 September 1980 and in revised form 13 November 1980) 

Abstract--An analysis is made of natural convection in a square enclosure, of which one vertical wall is 
cooled by an external natural convection boundary-layer flow. The other vertical wall is maintained at a 
uniform temperature while the horizontal walls are adiabatic. The resulting conjugate internal-external 
natural-convection problem was solved numerically for Grashof numbers between 103 and l 0  7 and for a 
Prandtl number of 0.7. Approximate solutions were also obtained using a model which avoids conjugate- 
type computations. For comparison purposes, a set of solutions were carried out for the standard natural- 
convection enclosure problem characterized by prescribed uniform temperatures on the vertical walls and 
adiabatic horizontal walls. For the overall heat transfer characteristics encompassing both the internal and 
external flows, the average Nusselt number displayed a power-law dependence on the Grashof number given 
by Nu = 0.0907 Gr ~ for Gr > l0 t. These Nusselt numbers are about sixty per cent of those for the standard 
enclosure, at common values of the respective Grashof numbers. The local heat flux variations along the 
convectively cooled wall were found to be appreciably smaller than those along the heated isothermal wall, 
reflecting the counterflow nature of the heat exchange between the internal and external flows. In addition, the 
temperature variations along the convectively cooled wall increased with increasing Grashof number. The 
Grashof number also decisively affected the temperature distributions along the adiabatic walls. Streamline 
maps revealed little difference between the flow fields adjacent to the thermally active and thermally passive 
walls at low Grashof numbers, but marked differences were in evidence at high Grashof numbers. For the 
external natural convection, the local heat transfer coefficients were generally larger than those predicted by 

the local application of the classical isothermal-plate heat transfer coefficient formula. 

NOMENCLATURE 

Gr, Grashof number, equations (5) and (27); 
g, acceleration of gravity; 
h, local heat transfer coefficient for external 

flow; 
k, thermal conductivity; 
L, length of side of enclosure; 

N u ,  average Nusselt number, equations (25) and 
(27); 

P, dimensionless pressure, equation (4); 
Pr, Prandtl number; 
p, pressure; 
Q, overall rate of heat transfer; 
q, local heat flux; 
T, temperature; 
To, temperature of cooled wall for standard 

enclosure; 
Th, temperature of isothermal heated wall; 
Twx , temperature distribution along adiabatic 

walls; 
Twr, temperature distribution along convectively 

cooled wall; 
T~o, ambient temperature; 
u, v, velocity components; 
U, V, dimensionless velocities, equation (3); 
U, V, dimensionless velocities, equation (10); 
X, Y, dimensionless coordinates, equation (4); 
x,y, coordinates; 
x', coordinate, (x - L); 

0, 

V, 

P, 
Z, 
r 
fl, 

coefficient of thermal expansion; 
dimensionless temperature, ( T - To~)/ 

(T h -Too); 
kinematic viscosity; 
density; 
dimensionless coordinate, equation (11); 
stream function; 
multiplying factor in representation of h, 
equations (22) and (30). 

INTRODUCTION 

NATURAL convection within rectangular enclosures 
has attracted considerable attention in recent years 
both from an applications standpoint and as a 
standard problem for numerical computation. The 
standard problem is concerned with two-dimensional 
buoyancy-driven flow in a rectangle whose vertical 
sides are maintained at uniform but different 
temperatures while the horizontal sides are adiabatic. 
This situation is shown schematically in Fig. l(a), 
where T h and Tc denote the uniform temperatures of 
the vertical walls (T h > To). There is extensive 
literature devoted to this problem, the earlier 
contributions to which were reviewed by Ostrach [-1]. 
Representative contributions to the recent literature 
are typified by Jones [-2] and Reddy and Satake [3]. 
These, together with the recently-published survey by 
Bejan [-4], convey bibliographies encompassing the 
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FIG. 1. Natural convection enclosure problems. (a) Standard enclosure problem with prescribed uniform 
temperatures on the vertical walls. (b) Conjugate internal buoyancy-driven flow and external natural 

convection boundary layer flow. 

main work of the past decade. 
Whereas the thermal boundary conditions indicated 

in Fig. l(a) constitute a well-defined standard case, 
they are somewhat restrictive in that they do not reflect 
possible thermal interactions between the enclosure 
and the surroundings. Typical among such 
interactions would be the transfer of heat by natural 
convection between one of the walls of the enclosure 
and the adjacent surroundings. Such a situation is 
pictured schematically in Fig. l(b), and this defines the 
problem that is the focus of the present study. 

Examination of Fig. l(a,b) reveals significant 
differences between the standard enclosure problem 
and that which is investigated here. The standard 
problem deals with the buoyancy-driven recirculating 
flow in the enclosure; it involves thermal boundary 
conditions on the enclosure walls which are known 
and specified in advance. However, the present 
problem actually deals with two flows--the 
recirculating flow in the enclosure and the external 
boundary layer flow along the right-hand wall of the 
enclosure. The temperatures T h (= constant) and Too, 
respectively at the left-hand wall and in the ambient 
fluid, are regarded as being given; the temperature at 
the right-hand wall is unknown. Its magnitude and 
distribution along the height of the wall are 
determined by the dynamics of the heat transfer 
process. Thus, the full complement of thermal 
boundary conditions needed to solve either of the 
flows is not known in advance. Consequently, the 
solution scheme must accommodate thermal 
interactions between the internal and external flows 
such that the wall-temperature distribution emerges as 
one of the results. 

Thus, the coupling of the two flows and the 
determination of the boundary conditions are 
distinguishing features of the present problem. In view 
of the coupling, the problem is of the conjugate type, 
and it is one of the few conjugate problems in the 
literature where the two contributing sub-problems 

are both natural-convection flows. 
The two natural-convection flows are, however, 

fundamentally different in nature. The external flow is 
a boundary layer. An essential feature of a boundary- 
layer flow is that the velocity and temperature at a 
given point are not influenced by happenings 
downstream of that point. Thus, a numerical solution 
can be obtained by a marching procedure which starts 
at the leading edge and proceeds downstream in the 
flow direction. On the other hand, because of the 
recirculating nature of the flow within the enclosure, 
the velocity and temperature at a point are influenced 
by both upstream and downstream happenings 
(indeed, that which is downstream of a point is also 
upstream). Thus, due to this coupling, a numerical 
solution for the fluid flow and temperature fields 
within the enclosure must deal simultaneously with all 
points. 

Frequently, boundary layer and recirculating flow 
problems are respectively characterized as parabolic 
and elliptic--these designations coming from the 
mathematical and computational nature of the 
respective problems (marching vs all-point 
interaction). The need to deal with interacting 
parabolic and elliptic problems is another special 
feature of this study. 

The flow directions indicated in Fig. l(b) 
correspond to the condition T h > Too. The upflow in 
the external boundary layer and the downflow in the 
adjacent internal flow give rise to a counterflow heat 
exchange situation, the ramifications of which will be 
amplified during the presentation of results. 

The solutions were carried out numerically for 
Grashof numbers Gr = 10 3, 10 4, 10 s, 10 6 and 10 7. Not 
only were solutions obtained for the conjugate internal 
flow-external flow problem, but a set of solutions was 
also carried out for the standard enclosure problem 
(Fig. l(a)). These supplementary solutions were 
obtained in order to provide perspective for the results 
of the conjugate problem. Although literature 
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solutions do exist for the standard problem, it was felt 
that for definitive comparisons of the standard and 
conjugate problems, both sets of solutions should be 
obta ined with the same methodology and 
computational procedures. 

For  the solutions, the fluids within and external to 
the enclosure were assumed to have the same 
thermophysical properties, with Prandtl number Pr = 
0.7. The enclosure was taken to be a square, such that 
L1 = L2 = L. 

Results in dimensionless form will be presented for 
the overall rate of heat transfer across the enclosure 
and for the local rates of heat transfer at the thermally 
active walls. Temperature distributions for the right- 
hand wall will be reported, as will the temperature 
distributions along the two adiabatic walls. Flow 
patterns will be displayed in terms of streamline 
maps. Wherever appropriate, comparisons will be 
made between the results of the conjugate problem and 
those of the standard enclosure. In addition, results of 
a simplified computational model for the conjugate 
problem will also be presented in order to establish its 
accuracy. 

ANALYSIS 

Problem formulation 
In formulating the conjugate internal flow-external 

flow natural convection problem, it is convenient first 
to deal serially with the conservation equations for 
each of the component problems. The formulation is 
then completed by the statement of the boundary 
conditions and of the matching conditions at the 
interface between the external and internal flows. 

Attention is first directed at internal flow. The 
buoyancy force is deduced by considering the terms 
(-Op/Oy - PO) which appear in the y-momentum 
equation and then adding and subtracting the 
constant P~o9 (Po~ corresponds to the density of the 
ambient fluid). When a Boussinesq-type equation of 
state, i.e. 

Poo - P = f lp(T -- Too) (1) 

is used, the foregoing terms become 

-O(p + poogy)/Oy + Oflp(T - Too). (2) 

The last term in equation (2) is readily identified with 
the buoyancy force while the quantity (p + PooOY) that 
appears in the first term is a hydrostatic-supplemented 
pressure. Note that the involvement ofpo~ as a datum is 
somewhat arbitrary. The density Ph associated with Th 
could also have been used as the datum. In either case, 
the final dimensionless conservation equations are the 
same. 

The dimensionless variables, coordinates and 
parameters which yield the simplest form of the 
conservation equations for the internal flow are 

u = u / ( v /L ) ,  V = v / ( v /L ) ,  

0 = ( T -  T~) / (T  h -  To)  

P = (p + p| 2, X = x/L, Y = y /L (4) 

Gr = gfl(T h - T~o)La/v 2, Pr = cp#/k. (5) 

The conservation equations which result from the 
use of equations (2) through (5) are 

0U 0V 
- -  + - -  - -  0 ( 6 )  
0X 0Y 

0U OU 0P 
U ~ + V o Y -  OX ~-V2U (7) 

0V 0V 0P 
U ~-X + V ~ = - 0 ~  + GrO + V2V (8) 

00 00 1 
V ~  + V o ~  = p~V20 (9) 

in which V 2 = 02/0X 2 + 02/0Y 2. These equations 
contain two dimensionless parameters, Gr and Pr. 

Attention may now be turned to the external flow, 
which is a boundary-layer flow. Here, the buoyancy- 
related terms (-Op/Oy - PO) in the y-momentum 
equation become (P oo9 - P9) because Op/Oy = dp oo/~y 
= - P o e ,  and the density difference (Po~ - P) is 
transformed to a corresponding temperature 
difference with the aid of equation (1). Since the 
thermal conditions along the wall x = L which bounds 
the external flow are not of an elementary type, there is 
no hope of encountering a similarity solution. 
Therefore, the conservation equations have to be dealt 
with in their partial-differential equation form. 

To attain the simplest dimensionless form of the 
conservation equations for the external flow, the 
following change of variables is made 

(] = (uL/v)/Gr 1/'*, ~.'= (vL/v)/Gr 1/2, 

O = ( T -  T| h - T o o )  (10) 

X = (x'/L) Grt/*, x' = x - L, Y = y/L. (11) 

The different scaling of u and v and of x and y is 
consistent with the known characteristics of natural- 
convection boundary-layer flows. Note also that x and 
y respectively denote the transverse and streamwise 
coordinates, in contrast to the usual designations. 

With these, the dimensionless conservation 
equations for the boundary layer are 

00 0|7 
02 ~- ~ -  0 (12) 

U ~ -  Z + V ~ -  = 0 +- -Oz  2 (13) 

A 00 ^ 00 1 020 
U ~  + V ~  = Pr OX 2" (14) 

In these equations, only one parameter, the Prandtl 
number, appears. 

In the transformations that were employed for the 
internal and external problems, the same 

__ thermophysical properties were employed for both. 
(3) This approach was adopted to avoid involvement with 
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an excessive number of prescribable parameters. It 
may also be noted that aside from Y and 0, different 
transformations were employed for the internal and 
external problems. This does not cause any difficulties, 
since, as will be shown, it is only Y and 0 that are 
involved in the continuity relations that link the 
internal and external problems. The internal 
transformation is precisely that which would have 
been employed for the case of pure internal flow (no 
coupling to an external flow), while the external 
transformation is that which would have been used 
had the external flow acted alone. 

Attention may now be turned to the boundary and 
continuity conditions. The velocity boundary 
conditions are those that are commonly employed 

U = V = 0, 0 = I~= 0 on solid boundaries (15) 

I?---~0 as X---~ oo. (16) 

For the temperature, the conditions 

~0 
0 = 1  and ~ - = 0  (17) 

are respectively appropriate for the left-hand 
boundary and for the top and bottom boundaries of 
the enclosure, while for the external flow 

0---~0 as Z---~oo. (18) 

The remaining conditions are those which deal with 
the temperature and heat flux at the boundary x = L 
which separates the internal and external flows (i.e. the 
right-hand boundary of the enclosure). There are 
various models which can be considered for the heat 
transfer processes in the wall that separates the flows. 
The simplest model is that in which both the thermal 
resistance across the thickness of the wall and the net 
conduction in the streamwise direction are negligible. 
For  that case, which is the one to be considered here, 
both the temperature and the heat flux are continuous 
across the thickness of the wall. 

The manner in which the continuity conditions are 
employed depends on the specifics of the method used 
to solve the conjugate problem. The solution 
methodology will now be described. 

Solution methodolooy 
In view of the complexity of the conjugate problem, 

a numerical solution is mandatory. The general 
approach is to work separately and successively with 
the two flows, feeding thermal information from one 
flow to the other across the common boundary x = L. 
Thus, for fixed values of the parameters, the solution 
procedure begins with the internal flow, then goes to 
the external flow, then returns to the internal flow, and 
so on until a converged solution is obtained. The key 
feature in the procedure is the method used to transfer 
information between the two flows, as will now be 
described. 

It has been our experience that in conjugate 
problems, more rapid convergence of an iterative 

solution scheme is achieved if, whenever possible, 
thermal information is transferred via the heat transfer 
coefficient than via the temperature or the heat flux. 
This is because at any stage of an iterative scheme, the 
transfer coefficient is usually closer to its converged 
value than are other quantities. 

With this in mind, the thermal boundary condition 
at x = L for the internalflow was written as 

- k  8T = h(T - Too), x =  L (19) 
~x 

where h is the local heat transfer coefficient for the 
external natural convection boundary layer flow 
adjacent to x = L. The numerical values ofh needed in 
implementing equation (19) are not actually known 
until the solution procedure has converged. However, 
since the procedure is an iterative one, provisional 
values of h can be used at each stage of the iteration, 
and these provisional values are successively refined as 
the solution converges. 

With regard to the thermal boundary condition at x' 
= 0 (i.e. x = L) for the external flow, initial 
consideration was given to a representation analogous 
to equation (19), that is 

- k  dT = hint(T ? - T), x' = 0 (20) 
ax' 

where hin t represents the local coefficient at x = L for 
the internal flow. The subscript symbol ? conveys t h e  
uncertainty that prevails about the rational choice of a 
reference temperature on which to base the definition 
of the local coefficient. We were unable to identify a 
simple reference temperature which truly participates 
in driving the internal heat transfer at x = L. Because 
of this, equation (20) was not employed as a boundary 
condition for-the external flow. Rather, at each stage of 
the iteration, the external flow was solved with a given 
surface temperature distribution at x' = 0. The 
temperature distribution, 0 vs Y, was taken from the 
immediately preceding internal flow computation. 

Taking the above paragraphs into account, a 
possible scenario for the numerical solution of tla~- 
conjugate problem might proceed as follows. First, the 
parameters Gr and Pr are chosen. Then, for any 
selected uniform wall temperature at x' = 0, the 
external natural-convection boundary layer is solved. 
yielding the distribution of the heat transfer coefficient 
along the wall. Next, attention is shifted to the internal 
problem, and the just-determined external heat 
transfer coefficients are used as input to the boundary 
condition (19). The internal problem is then solved, 
and this solution yields the temperature distribution 
along x = L. That temperature distribution serves as 
the wall boundary condition for the external 
boundary layer, and the corresponding solution 
provides an updated distribution of the heat transfer 
coefficient. These coefficients are transmitted to 
equation (19), and the internal problem is re-solved. 
This procedure may be continued until convergence is 
achieved. 
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The just-discussed procedure, while plausible, is not 
the one that was actually employed to solve the 
problem. The reason for its not being used can be 
explained by noting that the natural-convection heat 
transfer coefficient for boundary-layer flow should 
respond to the local wall-to-ambient temperature 
difference as well as to the streamwise distance from 
the leading edge. In the aforementioned scheme, the h 
values, as used in equation (19) and as perceived by the 
internal flow solution, are a given function of position 
at each stage of the iteration (the function of position 
changes from cycle to cycle). However, as the internal 
solution updates the wall-temperature distribution 
along x = L, h does not respond promptly. Indeed, the 
effect of the updated wall temperature on h is not felt by 
the internal solution until the next cycle of the 
iteration. It is this lag that prompted the use of another 
approach, which will now be described. 

To begin, it may be noted that for natural 
convection about a vertical plate with a uniform wall 
temperature Tw, the local heat transfer coefficient for 
Pr = 0.7 is 

h = (0.3532k/y) [gfl(Tw - Too)ya/v 2] 1/4. (21) 

Suppose that for a plate with a variable wall 
temperature Twy, equation (21) were to be applied 
locally (i.e. replace Tw by T~y) to predict h(y). If such 
predictions were then compared with the actual h(y) 
values obtained from a solution of the boundary layer 
equations, deviations would be encountered. Let f)(y) 
denote the ratio of the actual h(y) to that predicted by 
equation (21). Then, error-free predictions would be 
obtained by modifying equation (21) to read 

h = (0.3532k~(y)/y)[gfl(Twy- T~)y3/v2] TM. (22) 

Equation (22) is the h formula which was used as 
input to the boundary condition (19), with the 
provision that Twy be treated as an unknown as the 
computations for the internal problem are being 
performed. This enables the updating of the wall- 
temperature distribution which occurs during the 
internal solution to have an immediate effect on the h 
distribution. The substitution of (22) into (19) and the 
introduction of dimensionless variables yields 

( -~O/~X)/Gr t/4 = 0.3532~(Y)OS/4/Y 1/4, X = 1 (23) 

where Gr is a prescribed constant. 
Now, with equation (23) in hand, the steps of 

solution will be described. As before, values of the 
parameters Gr and Pr are selected and fixed. Attention 
is first focused on the internal problem, which is solved 
subject to f~(Y) = 1 in equation (23). The resulting 
O(Y) at X = 1 becomes the wall boundary condition 
for the external problem, the solution to which yields a 
distribution of f~(Y) as discussed in the text following 
equation (21). In particular, if d0/dZ is the local 
derivative at the wall which results from the boundary- 
layer solution, fl(Y) is evaluated as 

f l (Y)  = (-dO/c3z)Y1/4/0.35320~/4, • = 0. (24) 

The thus-determined f~(Y) are fed to equation (23), 
and the internal problem is solved anew. The wall 
temperatures at X = 1 from that solution are inputed 
to the boundary-layer problem, whose solution yields 
an updated set of f~(Y) via equation (24). This 
procedure is continued until convergence. 

Now that the general pattern of the solution 
methodology has been established, attention will be 
turned to certain relevant details. Numerical solutions 
of the boundary layer problem were obtained by 
employing the Patankar-Spalding method I-5]. This is 
an implicit finite-difference scheme, a special feature of 
which is that as the boundary-layer thickness varies, 
the grid automatically follows the variation. To ensure 
high accuracy consistent with reasonable execution 
time, a step size study was performed prior to the 
initiation of the main calculations, with the available 
similarity solution for uniform wall temperature used 
as a standard. The final grid pattern encompassed 160 
points in the cross-stream direction and slightly less 
than 5000 points in the streamwise direction. This 
large number of points (~800000) was easily 
accommodated because of the marching nature of the 
solution in the streamwise direction. In particular, to 
obtain the solution at any streamwise station, it is only 
necessary to know the values of the dependent 
variables at the station immediately upstream. 

As explained in the Introduction, the internal-flow 
problem requires a solution scheme that is basically 
different from that used for the boundary layer. The 
scheme employed here is that of Patankar [-6]. It is 
iterative in nature, beginning with guessed values for 
U, V, P and 0 and then refining these values until 
convergence. At this point, it is important to draw a 
sharp distinction between the two types of iterations 
that were required in solving the conjugate problem. 
One type is the cyclic and successive involvement with 
the internal and external problems, passing from one 
to the other as described earlier. The other iterations 
are those required to solve the internal flow problem at 
each stage of the aforementioned cyclic procedure. 

A 30 x 30 grid was employed to solve the internal 
problem. The deployment of the grid was tailored to 
the specifics of the velocity field for each Grashof 
number. The tailoring was performed on the basis of 
preliminary computer runs for 103, 104,..., and 107 for 
the standard enclosure problem (0 = 1 and 0 = 0, 
respectively at the left- and right-hand boundaries). 
From these solutions, velocity and temperature field 
graphs were prepared and, with these, the grid points 
were positioned so as to resolve all of the main features 
of the flow. This grid deployment was then used for all 
of the final computer runs. 

Convergence of the iterative scheme for the internal 
flow problem was attained without difficulty. The 
initial guessed values were U = V = P = 0 and 0 = 1. 
Both U and V were underrelaxed, w i t h  an 
underrelaxation factor of 0.5 for all Gr, except for Gr = 
107 where a factor of 0.2 was used for V. The 
temperature 0 was not underrelaxed for Gr = 103 and 
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104, while factors of 0.8, 0.5 and 0.5 were employed for 
Gr = 105, 106 and 107. 

As noted in the Introduction, a set of solutions for 
the standard enclosure problem was obtained for 
comparison with those for the conjugate problem. For 
the standard problem, only the internal flow need be 
solved, and the Patankar method I-6] was employed 
for the purpose. The starting values for the iterative 
solution were as stated in the preceding paragraph, 
except that 0 was selected to vary linearly between one 
and zero between the two vertical walls. The relaxation 
factors used in these solutions were identical to those 
used in the conjugate problem. 

As a validation of the solution method, the present 
heat transfer results for the standard enclosure 
problem were compared with those of McGregor and 
Emery [7]. The Grashof number range of McGregor 
and Emery extended up to about 2 x 105 rather than 
to the present 107 . Within our ability to read the 
graphical presentation of McGregor and Emery, it 
appears that agreement at the one per cent level 
prevails. 

RESULTS AND DISCUSSION 

The presentation of results begins with the average 
Nusselt number for the conjugate problem as a whole, 
spanning both the internal and external flows. This is 
followed by the local heat transfer results for the 
thermally active walls. Temperature distributions are 
then presented for the wall which separates the two 
flows and for the adiabatic walls of the enclosure. 
Local heat transfer coefficients for the external natural 
convection flow will be conveyed in terms of the f~ 
parameter that was introduced in equation (22). The 
presentation concludes with flow patterns for 
representative cases displayed via streamline maps. 

H e a t  transfer  

The overall rate of heat transfer Q passing across the 

enclosure into the ambient fluid can be evaluated by 
integrating the local heat flux along either of the 
thermally active walls of the enclosure or along the 
bounding surface of the external flow. All of these 
integrations yield identical results. If an average 

Nusselt number N u  is defined as 

N u  = ( Q / L ( T  h - To~))(L/k)  (25) 

it follows that, for instance, at the right-hand wall of 
the enclosure 

f f - -  ~0 d Y N u  = c~X (26) 

The average Nusselt number results for the 
conjugate problem are plotted as a solid line in Fig. 2 
as a function of the Grashof number. There are, in 
addition, two other lines in Fig. 2. The dashed line 

portrays the N u  results for the standard enclosure 
problem with uniform temperatures Th and Tc on the 
respective vertical walls of the enclosure [Fig. l(a)]. In 
this connection, it is important to note the different 

definitions of N u  and Gr for the standard enclosure 
relative to those for the conjugate problem. The 
difference is that Too is replaced by the cold-wall 
temperature To, so that, for the standard enclosure 

N u  = ( Q / L ( T  h - Tc)) (L/k) ,  

Gr  = Ofl(Th -- Tc)La/v  2. (27) 

The third of the lines in Fig. 2 represents a simplified 
computational model for the conjugate problem. As 
noted earlier, the conjugate problem was solved by 
cyclically passing back and forth between the internal 
and external flows until convergence was attained. An 
approximate solution can be obtained for the internal 
flow which avoids these cyclic visitations and which is, 
ttierefore, at the same level of computational 
involvement as the standard enclosure problem. The 
idea is to carry out only the first part of the first round 
of the cyclic process. This amounts to solving the 
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internal flow problem using equation (23) with 1) = 1 
as the boundary condition at X = 1, but with no 
visitation of the boundary-layer problem. This 
approach, albeit approximate, yields a solution of the 
conjugate problem without conjugate computations. 

Examination of Fig. 2 reveals the expected trend 
whereby the average Nusselt number increases 
monotonically with the Grashof number. The 

dependence of Nu on Gr, while not precisely linear on 
logarithmic coordinates, is very nearly linear over 
most of the range. For the conjugate problem, the 
results can be represented to within _ 1.5~ for Gr > 
104 by the power law 

Nu = 0.0907Gr ~ (28) 

For Gr < 10", there is a departure from the 
(logarithmically) linear behavior indicated by 

equation (28), so that at Gr = 10 a the Nu of (28) is 
about 7% low compared with the value from the 
computer solutions. 

The existence of a power-law representation for the 
heat transfer in a conjugate convection problem is, in 
itself, worthy of note. Although the two participating 
flows individually yield power-law representations at 
sufficiently high Grashof numbers, this is no guarantee 
that the conjugate problem will also yield a power law. 
In the present instance, perhaps it is the fact that the 
power-law exponents for the component flows are 
more or less the same (in the 0.25-0.30 range) that 
establishes the power law for the conjugate problem. 

The heat transfer results from the first-pass solutions 
for the conjugate problem lie slightly below those for 
the fully converged solutions, the maximum deviations 

being about 8%. In view of the computational 
simplifications afforded by the first-pass solution, an 
inaccuracy of 8% may be regarded as tolerable. 

The results for the standard enclosure problem are 
well represented (albeit not precisely) by a power law 
which applies over the entire range investigated 

Nu = 0.141Gr ~ (29) 

Equation (29) represents the computed results to 
+ t.8%. The exponent in equation (29) is very nearly 
the same as that in equation (28), and a common 
exponent might well have been used. 

To compare the results for the conjugate problem 
with those for the standard enclosure requires that 
some specification be made of the relative magnitudes 
of (Th -- Too) and (Th -- T~), since these temperature 
differences appear in the respective Nusselt and 
Grashof numbers. For the case in which these 
temperature differences are the same, the Nusselt 
numbers for the conjugate problem are about 60% of 
those for the standard enclosure for Gr > 10", with 
somewhat smaller deviations at lower Grashof 

numbers. The lower Nu values for the conjugate 
problem can be attributed to the thermal resistance of 
the external flow. It is, however, quite remarkable that 
the deviations are so uniform over so large a range of 
Grashof numbers. 

Attention will now be turned to the local heat 
transfer results for the thermally active walls. These 
results are shown in Figs. 3 and 4 for the left-hand wall 
(the heated wall) and the right-hand wall (the cooled 
wall), respectively. Each figure is subdivided into two 
panels [(a) and (b)]. The (a) panel conveys the 
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FIG. 3. Local heat flux distributions for the heated isothermal wall. 
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FIG. 4. Local heat flux distributions for the convectively cooled wall. 
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distributions of the local heat flux for the conjugate 
problem while the (b) panel shows comparisons 
between results for the conjugate problem and the 
standard enclosure. 

Turning first to Fig. 3(a), it may be noted that the 
fluid flow is in the direction of increasing y. Thus, as the 
fluid passes upward along the hot wall, its temperature 
increases and the boundary layer thickens, with a 
resultant decrease of the local heat flux as portrayed in 
the figure. The sharpness of the decrease is most 
marked at the higher Grashof numbers. At lower 
Grashof numbers, convection wanes and the 
distribution becomes more uniform as conduction 
takes over. The shapes of the high-Gr distributions in 
the neighborhood of y = 0 suggest the presence of a 
low-velocity region (perhaps a sluggish recirculation 
zone) in the corner at the base of the wall. 

In Fig. 3(b), the heat flux distributions for the 
conjugate problem are compared with those for the 
standard enclosure for Gr = 10 3 and l0 T . The 
distribution curves for the two problems are seen to be 
remarkably similar in shape, suggesting similarity in 
the flow fields adjacent to the hot wall. For 
quantitative comparisons of heat flux magnitudes, it is 
once again necessary to specify the relative magnitudes 
of(Th -- To) and (T h - To). For  the case where these 
temperature differences are the same, the heat fluxes 
for the standard enclosure exceed those for the 
conjugate problem, the percentage deviations being 
similar to that for the overall heat transfer (i.e. the 
average Nusselt number). 

In assessing the local heat flux distributions of Fig. 4 
for the cooled wall (i.e., the right-hand wall), it is 

relevant to note that the internal flow moves 
downward along the wall, i.e. from y/L = 1 to y/L = O. 
Thus, it might be expected that the heat flux would 
decrease as y/L decreases from 1 to 0. This trend is, in 
general, in evidence in Fig. 4(a), which conveys the 
results for the conjugate problem. However, it is 
interesting to note that these decreases of q along the 
flow direction are substantially smaller than those of 
Fig. 3 for the hot wall. The reason for the greater 
uniformity of q on the cooled wall is the counterflow 
nature of the heat transfer process at that wall. As 
indicated in Fig. l(b), the downward internal flow 
transfers heat to the upward external flow. The 
tendency for q to take on a local maximum at y = 0 can 
be attributed to the very high values of the external 
heat transfer coefficient in that region. 

In Fig. 4(b), comparisons are made between the 
cooled-wall heat flux distributions for the conjugate 
problem and the standard enclosure problem. These 
comparisons show that the heat flux for the standard 
enclosure is much more nonuniform than that for the 
conjugate problem. This greater nonuniformity for the 
standard problem is due to the absence of the 
aforementioned counterflow effect which prevails in 
the conjugate problem. 

Wall temperature distributions 
The distribution of the temperature along the wall 

which separates the internal and external flows is 
presented in Fig. 5(a) with the Grashof number as the 
curve parameter. Comparisons of the results from the 
first-pass solutions with those from the fully converged 
solutions are shown in Fig. 5(b). 
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FIG. 5. Temperature distributions along the wall which separates the internal and external flows. 

In interpreting the results of the figure, it should be 
noted that the direction of the internal flow is from y/L 
= 1 to 0 and that the internal flow loses heat to the 
external flow as it passes along the wall. The decrease 
of the wall temperature with decreasing y/L is, 
therefore, entirely plausible. Also plausible are the 
progressively higher values of the wall temperature at 
y/L = 1 which accompany an increase in the Grashof 

number. The temperature elevation occurs because the 
higher Grashof number flow is more effective in 
carrying higher temperature fluid from the hot wall 
across to the convectively cooled wall. 

The wall temperature is seen to be increasingly more 
nonuniform as the Grashof number increases. The 
relative uniformity of the temperature at the lower 
Grashof numbers is due to the waning of convection 
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FIG. 6. Representative temperature distributions along the adiabatic walls of the enclosure. (a) Upper wall; 
(b) lower wall. 
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FIG. 7. Distributions of ~ to be used in the Nusselt number representation, equation (30), for the external 
natural convection flow. 

and the growing importance of heat conduction. 
Figure 5(b) shows that the first-pass solution yields 

temperature distributions which are similar in shape to 
those of the converged solution. Generally, the first- 
pass solution tends to overestimate the wall 
temperature, but the errors appear to be tolerable. 

Representative temperature distributions along the 
adiabatic walls of the enclosure are shown in Fig. 6(a), 
which pertains to the upper wall, while Fig. 6(b) 
pertains to the lower wall. To facilitate interpretation 
of the results, the coordinate directions have been 
taken along the respective directions of fluid flow as 
indicated in the inset of each part of the figure. Results 
are provided both for the conjugate problem and for 
the standard enclosure problem (solid and dashed 
lines, respectively). 

In considering Fig. 6(a), note may be taken of the 
significant Grashof-number-related differences in the 
temperature distribution along the upper wall. At high 
Grashof numbers, the vigorous recirculating flow 
blankets the upper wall with hot fluid (i.e. fluid 
previously heated at the left-hand wall of the 
enclosure). Consequently, high temperatures are in  
evidence along the upper wall. On the other hand, at 
relatively low values of Gr, the convection is relatively 
weak and conduction forces a more or less linear 
temperature variation across the enclosure. The 
qualitative trends are similar for both the conjugate 
problem and the standard enclosure problem. 

The just-cited factors which operate to establish the 
temperature distributions along the upper wall are 
also operative along the lower wall, as can be seen in 
Fig. 6(b). The orientations of the curves in the two 

parts of the figure are just opposite because of the 
opposite fluid-flow directions along the upper and 
lower walls. The quantitative deviations between the 
high-Gr solid and dashed curves in the right-hand 
panel are greater than those in the left-hand panel, This 
is because the thermal conditions along the right-hand 
wall are different in the conjugate and standard 
enclosure problems. 

Nusselt numbers for the external flow 
From the converged solutions for the conjugate 

problem, the local heat transfer coefficients and 
corresponding Nusselt numbers for the external 
natural convection flow have been deduced. These 
results may be phrased in the form 

hy/k = 0.3532~[9fl(Twy - T~)ya/v2] 1/4 (30) 

where f~ = f~(y) is presented in Fig. 7 and Twy is the 
local wall temperature at y. 

With f~ = 1, equation (30) depicts the application of 
the h formula for uniform wall temperature to a 
situation where the wall temperature varies along the 
flow direction. The fact that f~ ~ 1 (Fig. 7) 
demonstrates that direct local application of the 
isothermal wall formula to a nonisothermal wall is not 
strictly valid. In a sense, f~ plays the role of a correction 
factor which redresses any errors made by local 
application of the h formula. 

Figure 7 shows that the distribution of fl along the 
wail evolves with increasing Grashof number. At the 
lowest Grashof number investigated, f~ varies 
smoothly with y and departs only moderately from 
unity. As Gr increases, the level of fl tends at first to 
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FIG. 8. Streamline pattern for Gr = 10 3. The curve parameter 
is r 

increase, but further increases in Gr are mainly 
instrumental in altering the shape of the fl distribution. 
For  Grashof numbers greater than 103, the fl  values 
are, for the most part, in the range 1.2-1.3. The fact that 
f~ > 1 is consistent with the increase of Twy in the 
direction of the boundary-layer flow. 

Flow patterns 
The qualitative nature of the fluid flow in the 

enclosure can be effectively visualized with the aid of 
streamline maps. Representative streamline maps 
based on the solutions of the conjugate problem are 
presented in Figs. 8 and 9. The figures correspond to 
Grashof numbers of 10 a and l0 T , which are, 
respectively, the smallest and largest values that were 
investigated. The numerical labels that are used to 
identify the contour lines in each figure correspond to 

the dimensionless streamfunction ~b/v. 
Comparison of Figs. 8 and 9 reveals numerous 

Grashof-number-related differences in the flow fields. 
At low Grashof numbers, there is an all-encompassing 
symmetry such that the flow field adjacent to the 
adiabatic walls (the horizontal walls) is virtually 
identical to that adjacent to the thermally active walls 
(the vertical walls). On the other hand, at high Grashof 
numbers, the streamlines are crowded together next to 
the active wails while they are widely spaced adjacent 
to the adiabatic walls. The crowding of the streamlines 
is indicative of a boundary-layer-type flow along the 
active walls. Figure 8 shows that a Grashof number of 
103 is too low to produce boundary layer flows. 

Aside from the aforementioned differences in the 
shapes of the streamlines, there are also marked 
differences in the magnitudes of the streamfunction for 
the two Grashof numbers. The streamfunction values 
of Gr = 107 are about 40 times those for Gr = 1 0  3. 

This means that the buoyancy-induced mass flows for 
the two cases bear that ratio to each other. 
Furthermore, since u = dt~/dy and v = - dJ//~x, it is 
clear that the velocities are markedly larger at higher 
Grashof numbers. In particular, the solutions show 
tha t  Urea x for Gr = 107 is about 100 times the Umax 
value for Gr = 1 0  3 ; the corresponding ratio of the Vmax 
values is about 250. 

In the streamline map for Gr = 1 0  7, modest 
asymmetries of the flow with respect to the two active 
walls are in evidence. These asymmetries are due to the 
different thermal boundary conditions at the two 
walls. 

The streamline maps of Figs. 8 and 9 are 
qualitatively similar to those for the standard 
enclosure at the same values of the Grashof number. 
Quantitative comparisons require specification of the 
relationship between the temperature differences (Th 
-- Too) and (Th - Tc) which appear in the respective 
Grashof number definitions. 

50 

2O 

FIG. 9. Streamline pattern for Gr = 10 7. The curve parameter 
is ~,/v. 

CONCLUDING REMARKS 

Solutions have been obtained here for a conjugate 
natural convection problem encompassing a 
buoyancy-driven recirculating flow in an enclosure 
and an external natural-convection boundary-layer 
flow along one of the walls of the enclosure. In addition 
to the complete numerical solutions, a set of 
approximate solutions were carried out which avoids 
computational involvement with the boundary-layer 
flow and focuses all numerical activity in the enclosure. 
To provide perspective for the results of the conjugate 
problem, numerical solutions were also obtained for 
the standard enclosure problem in which the two 
vertical walls have prescribed uniform temperatures 
while the two horizontal walls are adiabatic. 

The solutions spanned the range of Grashof number 
between 10 3 and 10 7, with the Prandtl number equal to 
0.7 in all cases. The enclosure geometry was square. 

The overall heat transfer characteristics for the 
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conjugate problem as a whole, encompassing both the 
internal and external flows, were expressed in terms of 

the average Nusselt number Nu.  For Gr > 104, the 

N u - G r  relationship was well represented (to within 

+ 1.5%) by the power law: N u  = 0.0907Gr ~ At 

low Gr, the N u  values tend to fall above those given by 

the power law. The approximate solutions yielded N u  
values that are slightly lower than those from the 
complete solutions, with a maximum deviation of 

about 8%. The Nu results for the standard enclosure 

could also be well represented by a power law N u  = 
0.141Gr ~ to within + 1.8% over the range Gr > 103. 
If (T h - Too) for the conjugate problem were equal to 

(T h - To) for the standard enclosure, the Nu for the 
former would be about 60% of those for the latter when 
Gr >~ 104. 

The local heat fluxes at the thermally active walls of 
the enclosure tend to decrease in the direction in which 
fluid flows along the respective walls. The extent of the 
variation is much smaller along the convectively 
cooled wall than along the isothermal heated wall, 
reflecting the counterflow nature of the heat exchange 
between the internal and external flows at the 
convectively cooled wall. At lower Grashof numbers, 
the local heat flux distributions tend toward greater 
uniformity. 

At the wall which separates the internal and external 
flows, the temperature decreases in the direction of the 
internal flow. This decrease results from the heat loss 
by the internal flow to the external flow as it passes 
along the wall. The extent of the temperature variation 
along the wall increases with increasing Grashof 
number. The temperatures at the adiabatic walls of the 
enclosure are strongly affected by the Grashof number. 
At high Grashof numbers, the relatively vigorous 
recirculating flow impresses its temperature history on 
the adiabatic walls, while at low Grashofnumbers heat 

conduction is the key factor in establishing the 
temperature at these walls. 

The local heat transfer coefficients for the external 
natural convection are generally higher than those 
predicted by locally applying the h formula for uniform 
wall temperature. At the higher Grashof numbers, the 
deviations are in the 20-30% range. 

Streamline maps revealed marked Grashof- 
number-related differences in the flow pattern within 
the enclosure. At low Gr, the flow field adjacent to the 
adiabatic walls is similar to that adjacent to the 
thermally active wails, and there is no evidence of 
boundary-layer-type flow. On the other hand, at large 
Gr, boundary layer flows occur adjacent to the active 
walls but not along the passive walls. 
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INTERACTION ENTRE LA CONVECTION NATURELLE DANS UNE CAVITE ET lfN 
ECOULEMENT EXTERNE DE CONVECTION NATURELLE A COUCHE LIMITE 

R6sura6-- On analyse la convection naturelle dans une cavit6 carr6e dont une paroi verticale est refroidie par 
un 6coulement externe de convection naturelle avec eouche limite. L'autre paroi verticale est maintenue ~i 
temp6rature uniforme alors que les parois horizontales sont adiabatiques. Le probl6me de couplage de 
convection naturelle interne-externe est r6solu num6riquement pour des hombres de Grashofentre 103 et 10 7 

et pour un nombre de Prandtl de 0,7. On obtient aussi des solutions approch~es ~i partir d'un mod61e qui 6vite 
les calculs de type conjugu6. Pour comparaison, on donne les solutions pour le probl6mr classique de 
convection naturelle dans une cavit6 avec temp&ature impos6e sur les parois verticales et avec parois 
horizontales adiabatiques. Pour les caract6ristiques moyennes du transfert thermique, le nombre de Nusseit 
moyen d6pend du nombre de Grashof suivant la loi de puissance Nu = 0,0907 Gr ~ pour Gr >>. 104. Ce 
nombre de Nusselt est environ soixante pour cent de celui pour la cavit6 classique, aux m6mes valeurs du 
nombre de Grashof. Les variations du flux local ie long de la paroi refroide par convection sont sensiblement 
plus faibles que celles le long de la surface isotherme chaude, traduisant l'opposition entre les effets 
thermiques des 6coulements interne et externe. De plus les variations de temp&ature le long de la paroi 
refroidie par convection croissent lorsque le nombre de Grashof augmente. Le nombre de Grashof agit sur la 
distribution de temp6rature le long des parois adiabatiques. La carte des lignes de courant montre une petite 
diff6rence entre les champs d'6coulement adjacents aux parois thermiquement actives et passives aux faibles 
hombres de Grashof, mais des diff&ences marqu6es sont visibles aux grands nombres de Grashof. Pour la 
convection naturelle externe, les coefficients locaux de transfert thermique sont gen6ralement plus grands que 
ceux obtenus par application de la formule relative au coefficient de transfert sur une plaque isotherme. 
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W E C H S E L W I R K U N G  Z W I S C H E N  I N N E R E R  FREIER K O N V E K T I O N  IN EINEM 
H O H L R A U M  U N D  EINER E XT E R NE N G R E N Z S C H I C H T S T R C ) M U N G  D U R C H  FREIE 

K O N V E K T I O N  

Zusannnenfassung - -  Es wird einr Untersuchung durchgeffihrt fiber die freie Konvektion in einem 
quadratischen Hohlraum, von dessen vertikalen W/inden eine dutch eine Grenzschichts t r6mung infolge 
/iuBerer freier Konvektion gekiihlt wird. Die andere vertikale Wand wird auf  gleichf6rmiger Temperatur  
gehalten, w//hrend die horizontalen W/inde adiabat  sind. Das  auftretende gekoppelte Problem interner und  
externer freier Konvekt ion wurde numerisch fiir Grashof-Zahlen zwischen 10 ~ und 10 ~ und flit r Prandtl-  
Zahl yon 0,7 gel6st. N/iherungsl6sungen wurden auch mit einem Modell erzielt, welches die gekoppelte 
L6sung vermeidet. Zu  Vergleichszwecken wurde eine Anzahl L6sungen fiir das Standardproblem freier 
Konvekt ion in einem Hohl raum berechnet, das durch vorgegebene gleichf6rmige Temperaturen an den 
vertikalen Wb~nden und adiabate horizontale W/inde gekennzeichnet ist. Ffir den Gesamtw//rmedurchgang,  
der sowohl die interne als auch die r freie Konvektion umfaBt, zeigt die mittlerr Nusselt-Zahl eine 

Abh~.ngigkeit yon der Grashof-Zahl  nach einem Potenzgesetz, das bei Gr <_ 104 durch Nu = 0,0907Gr ~ 
gegeben ist. Diese Nusselt-Zahlen erreichen etwa 60 % der Werte ffir den Standardhohlraum bei (iblichen 
Werten der entsprechenden Grashof-Zahlen. Die 6rtlichen Variationen des W//rmestroms entlang der 
konvektiv gekiihlten Wand  waren merklich kleiner als die an der beheizten isothermen Wand,  was im 
Gegenstromcharakter  des W/irmeaustausches zwischen interner und  externer St r6mung begriindet ist. 
Aul3erdem nahmen  die Temperaturvariat ionen entlang der konvektiv gekfihlten Wand  mit zunehmender  
Grashof-Zahl  zu. Die Grashof-Zahl  beeinfluflte auch maBgebend die Temperaturverteilungen entlang der 
adiabaten W/inde. Stromlinienbilder zeigten bei niedrigen Grashof-Zahlen wenig Unterschiede zwischen den 
Str6mungsfeldern nahe den thermisch aktiven und thermisch passiven W/inden, doch wurden markante  
Unterschiede bei hohen Grashof-Zahlen sichtbar. Bei der externen freien Konvektion waren die 6rtlichen 
W/irmeiibergangskoeffizienten im allgemeinen gr6Ber als die durch 6rtliche Anwendung der klassischen 

Formeln fiir die isotherme Wand  berechneten Werte. 

B3AHMO,/1EIYlCTBHE M E ~ , ~ Y  BHYTPEHHE17I ECTECTBEHHOITI KOHBEKI2HEITI 
B FIO.rlOCTH H BHEIIIHHM r l O F P A H H q H b l M  C.FIOEM, O B P A 3 O B A H H b I M  

E C T E C T B E H H O R  KOHBEKIIHEI7I 

Auno'rautm - -  Hpoae/l~H aHa~ti3 eCTeCTBeHHOfi KOHBeKI~HH B Kaa~paTHOfi nOJIOCTH, ojlna H3 BepTtlra~b- 
HI, IX CTeHOK KOTOpOfi oxaax~laeTca BHeLUHHM llorpanntlnblM C~IOeM, o6paaoaaHnbiM ecTecTaeHnofi 
KOHBeKIIHe~. Ha aTopo~ BepTHKaJIbHOH cTenre  noa~epxnBaeTca oanopo~naa  TeMnepaTypa, ropnsoH- 
/aJlbnble cTenrn aa~atOTCa aj1)ia6aTnqecKltMn. Conpax~Haaa 3aaaqa ann  aHyTpeaaeH H BHeILIHe~ 
eCTeCTBeHHOfi rOHBeKHHH pemeua ,mcaenno'~t-qa ,mcea Fpacro~ba OT ]0 3 aO l07 H 'mcaa  Flpan~T.aa 0,7. 
f l p n 6 ~ n x ~ n n u e  pemeHtla 6bLaU TaK~e no.qyqenbl npn  noMoml4 MO~]eJ1H, He caaaannofi c conpa~K6unofi 
ROCTaHOBI(O~ 3a~aqH. C Lle~lhlO cpaBHeHEII;I Bbn1oJIHen pa~ pemenn~ ~ a  143BeCTHO~ CTaH~apTHO~ 
3a~atlH 0 eCTeCTBeHHOH KOHBeKm, IH, xaparTeplt3ytolRefics 3a~annbIMtl OI]HOpO,~HbIMH TeMnepaTypaMn 
Ha BepTHKa21bHI~IX CTeHKaX I4 a~lla6aTHqeCKHMH ropn3onTa.abHblMti CTeHKaMH. ,~.qfl o n n c a n n a  Ten~o- 
nepeHoca, arJlto,latomero Mar BHyTpenHne, TaM n aHemane noTorn, npe~J.ao~Kena CTenennaa 3aancn- 
MOCTb cpe~nero ancaa Hycce~bTa OT qtIc.qa Fpacroqba: ~ = 0,0907Gr ~ 21.an Gr >_ l04. ,~annbie 
stlcaa HycceabTa COcTaaastOT npnMepHo 60% OT ,~ncea HycceabTa JJ.aa cTan~apTHOfi 3a~aan npn 
COOTBeTCTBy~OU.tt~X 3naqenaax qnce~ Fpacroqba. f i b r e  o6nhpyx~eHo, ~lTO naMeuenna aora.abHoro 
TeHJ~OBOFO nOToKa B~OJlb KOHBeKTHBHO Ox21a)K~aeMOH CTeHKH 3Haql4Te.qbHO MeHblJ.Ie, He)KeflH B,~O~b 
narpeTo~ naoTepMi4,~ecro~ cTenrn, STO o6ycaoaaeno npoTi4aonoaox<nUMn nanpaaaennaMn ~Bn~KeHna 
anyTpeanero n BHemHero noToroa. KpoMe TOrO, n3Menenaa TeMnepaTypu B~OJlb ronnerTnano 
ox~ax~aaeMo~ cTenrn ao3pacTami c yaeai~qenaeM ,~nc~a Fpacroqba. q n c a o  Fpacroqba nMeao pemarolUer 
s ananne  Ta rxe  n na pacnpe~eaemle TeMnepaTyp a~oab a~aa6aTnqecrux CTeHOr. KapTaUhI ~nnnfi 
Tora npo~eMOnCTpnpoaa~a He6oabmoe paaat isae Me~r~ty noasMn cropocTefi, nptLaera~outtIMn x 
TepMn~ecrn a rTnaauM n TepMnsecrn naccnanblM cTenraM npn Ma~ux qnc~ax Fpacroqba, 8o npn 
6oabmnx ~nc ,ax  Fpacro~ba BTO paaanaae  6bLaO apro  aupa~reUHbIM. ~ a  c~y~aa aHeluHe~ eCTeCTBeHHOfi 
xonBerunn MecTn~,ie roaqbqbnu~4enTt,~ Tenaoo6Mena O6b~qHO npeaocxo~Laa roaqbOpnuneHTbl, npeacraBb~- 

aaeMb~e r~acca,~ecrofi qbopMyao~ 21.an roactbqbaatienTa Ten~oo6MeHa Ha H3OTepMHqeCrO~ n.qacTnne. 


